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1 Introduction
Environmental monitoring plays a crucial role in ensur-
ing sustainable urban development and safeguarding
public health. The release of toxic chemicals by indus-
tries can have serious environmental consequences,
making it vital to monitor and manage these releases
effectively. The Toxics Release Inventory (TRI)[2] pro-
vides a comprehensive database on the types and quan-
tities of hazardous chemicals released into the envi-
ronment by industries, offering transparency and a
valuable tool for decision-makers. Existing platforms
like EnviroMapper[1] lack user-friendly interfaces and
effective tools for data exploration and analysis. The
motivation behind this project is to improve the acces-
sibility and usability of TRI data through an interactive
geospatial UI, enabling stakeholders to make more in-
formed decisions, track trends, and enhance pollution
prevention efforts.

2 Problem Definition
Existing platforms that provide access to TRI data, such
as EnviroMapper, lack the necessary functionality to
enable effective analysis and interpretation of this in-
formation. The main challenge is the insufficient vi-
sualization of TRI data and the absence of interactive
tools to track changes over time or evaluate the impact
of regulations. This restricts stakeholders’ capacity to
effectively use the data for informed decision-making
and policy assessment.
Our goal is to develop an interactive geospatial user

interface (UI) that allows users to explore TRI data,
clearly identify trends, and evaluate the effects of regu-
latory actions. This will enhance decision-making and
environmental risk management for stakeholders.

3 Literature Survey
This literature survey explores existing research that
informs the development of more effective tools for
interpreting environmental data, focusing on issues of
data accuracy, presentation, and usability.
Khanna (2019) [6] criticizes inconsistent production

data and unreliable self-reporting by industries, espe-
cially regarding chemical releases. She advocates for

removing "zero value" data, which influenced our data
preparation by filtering out unnecessary information
and enhancing data presentation for our geospatial plat-
form. The TriSig paper [8] introduced a method for
identifying significant patterns across three dimensions,
which is used to highlight patterns linking pollution
levels to specific times and places, inspiring our use of
clustering techniques to pinpoint pollution hotspots.
The study on the Spatial Correlation of Industrial

Carbon Emissions [9] highlighted regions with high
emissions and their causes, offering insights for data-
driven decision-making and recommending the region-
specific policies for effective reduction of carbon foot-
prints. This motivated us to recognize that focusing on
regional levels is a crucial factor for stakeholders. In-
sights from the sales forecasting literature [16] guided
our choice of metrics, where we opted for mean abso-
lute error (MAE) for simplicity, instead of the suggested
mean absolute scaled error (MASE). The comparative
study on machine learning models for gas warning
systems [13] informed our choice of Random Forests
for their ability to handle complex data relationships,
later deciding to test with histogram gradient boosting
ensemble[14] to potential performance improvement.
The paper on data storytelling in visualization [3]

emphasized the importance of narrative in improving
data understanding, which guided the design of our
geospatial data presentation. Techniques from Learn-
ing Geospatial Analysis with Python [7] helped process
and visualize environmental data, despite limited cov-
erage of environmental datasets like TRI. Additionally,
studies using Folium for mapping and clustering, such
as the Surabaya City criminal acts study [10] and the
crime forecasting paper [11], inspired our approach for
identifying pollution hotspots, although we faced chal-
lenges in clustering and integrating time-series data.
Finally, insights fromAppliedGeoSpatial DataScience

with Python [5] and other papers on real-time data vi-
sualization and sensor data processing [12], as well as
time series forecasting [4], contributed to shaping the
tech stack for our interactive mapping and data han-
dling. Additionally, scikit-learn’s resources [15] helped
guide the implementation of machine learning models,



particularly for evaluation metrics such as Mean Abso-
lute Error(MAE), Mean Squared Error(MSE), Root Mean
Squared Error(RMSE), and Mean Absolute Percentage
Error(MAPE), which were critical in our experiments.

4 Proposed Method
The proposed methodology stands out from the state
of the art by introducing a suite of innovative features
designed to enhance both data analysis and decision-
making processes. First, Dynamic Data Interactivity em-
powers users to explore TRI data through intuitive, in-
teractive visualizations that support real-time filtering
by location, chemical type, and time frame. This func-
tionality enables stakeholders to engage more mean-
ingfully with the data and make faster, better-informed
decisions. Second, Advanced Clustering Analysis lever-
ages techniques like PCA and K-Means to uncover pol-
lution hotspots and guide effective pollution prevention
strategies, offering a more analytical approach than tra-
ditional methods. Finally, Geospatial Visualization in-
tegrates facility-level maps with chemical release data,
enhancing spatial awareness of environmental impacts
and allowing for a clearer understanding of pollution
distribution. An embedded dashboard further enhances
user experience by consolidating key metrics and vi-
sual summaries in one accessible view. Together, these
innovations intuitively provide richer insights, faster
pattern recognition, and better decision support. The
steps taken to develop tox-e-mapper are divided into
five main sections as below:

(1) Data Cleaning and Preparation: Essential steps
were taken to improve the TRI dataset’s quality
(1987–2023, 3 million data points):
• Removed facilities with less than 15 years of
data and applied an 80% null threshold, remov-
ing 15 fields with excessive missing data.

• Removed 63 fields with over 80% zero values to
focus on meaningful data.

• Standardized Zip Code field by convertingmixed
data types (strings/numbers) to numeric format.

These steps ensured a cleaner dataset, ready for
analysis, modeling, and clustering.

(2) Exploratory Data Analysis (EDA): An in-depth
EDA is conducted to understand patterns in the
dataset[Refer Appendix 2], including the follow-
ing steps:

• Statistical Summaries: Computed descriptive
statistics (mean,median, standard deviation, quar-
tiles) for key variables like chemical releases,
production waste, and facility locations to un-
derstand central tendencies and variability.

• Feature Importance and Decision Tree Regres-
sor: A Decision Tree Regressor was trained on
25% of the dataset, removing irrelevant fields.
The top 10 important features were visualized
using a color-coded bar chart to guide feature
engineering and model selection.

• Log-Scale Histogram of Key Features: Log-scale
histograms for the top 5 features were created
to examine skewed distributions, data patterns,
and outliers.

• Correlation Matrix and VIF: A correlation ma-
trix heatmap was generated to detect multi-
collinearity, and the Variance Inflation Factor
(VIF) was calculated to flag features for potential
removal or transformation.

(3) Model Training: Machine learning models are
used to analyze the data. The model training pro-
cess involves the following steps:
• Model Selection: Chose HistGradientBoostin-
gRegressor for its ability to handle large datasets
and predict continuous outcomes.

• Hyperparameter Tuning: ConductedGrid Search
to optimize parameters (learning_rate, max_leaf_nodes,
regularization, loss_function) with four scoring
functions.

• Model Evaluation: Assessed performance using
MAE, MSE, RMSE, MAPE across three runs; ana-
lyzed learning curves for overfitting/underfitting[Refer
Appendix 1].

• Error Handling: Monitored and adjusted the
model’s tendency to predict zeros (no chemi-
cal release) for meaningful predictions.

(4) Clustering
• PCA for Dimensionality Reduction: Principal
Component Analysis (PCA) is used to reduce
the dataset’s dimensionality, preserving vari-
ance and improving clustering performance by
focusing on the most significant features.

• K-Means Clustering: The K-Means algorithm
groups facilities with similar chemical release
profiles. The optimal number of clusters, K, is
determined using the elbow method and silhou-
ette analysis.
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• Cluster Interpretation: Clusters are analyzed to
identify common characteristics (e.g., chemical
releases, industry types), which inform pollu-
tion prevention strategies and regulatory deci-
sions. These clusters are visualized on a geospa-
tial map.

(5) User Interface Building:
• Data Visualization and Interactive Features:
Tableau visualizations[Refer Figure 1 Appen-
dix 3] and geospatial mapping allow users to
filter TRI data by location, chemical, industry,

and time, with mouse hover details on facility
locations. User-friendly filters, selection cards,
and clustering models enable refined searches
and deeper insights.

• Embedding and Deployment: The final dash-
board is embedded in a website using JavaScript,
HTML, and CSS for easy access, promoting pub-
lic interaction and data-driven decision-making.

Figure 1: Enviromapper Vs Tox-e-mapper

5 Evaluation
The evaluation of Tox-E-Mapper focuses on assessing
the platform’s usability and its effectiveness in sup-
porting data exploration and pattern recognition. The

evaluation involved participants including classmates
and general environmental data users. The goal was
to understand how Tox-E-Mapper performs compared
to the EnviroMapper tool, particularly in terms of user
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experience and data exploration capabilities. The eval-
uation is designed to answer the following research
questions:

(1) Is Tox-E-Mapper more user-friendly and interac-
tive compared to EPA’s EnviroMapper?

(2) Does Tox-E-Mapper reduce task completion time
and improve user satisfaction?

(3) How easy is it to identify pollution hotspots and
explore chemical release trends using Tox-E-Mapper?

5.1 Experimental Design and
Observations

• Usability Evaluation:To assess the usability of
Tox-E-Mapper and EnviroMapper, a user survey
was conducted in which participants completed
a series of common environmental data-related
tasks using both platforms. The tasks included
locating the user’s address to view TRI data, iden-
tifying the most recently released toxin in their
area, and exploring the emission trend of a se-
lected toxin over time. Participants rated how easy
or difficult it was to complete each task on a 5-
point Likert scale, where a rating of 1 indicated
“Very Easy” and 5 indicated “Very Difficult.” The
primary goal of the survey was to gauge user sat-
isfaction, ease of use, and task efficiency for both
tools.
The results clearly demonstrated that Tox-E-Mapper
was significantly more user-friendly than Envi-
roMapper. Tox-E-Mapper had a mean ease of use
rating of 1.79, while EnviroMapper scored 3.29,
indicating that participants found Tox-E-Mapper
considerably easier to use. For specific tasks, Tox-
E-Mapper was notably faster and easier to navi-
gate, with ratings of 2.00 for Task 1 (locating TRI
data) and 2.43 for Task 2 (identifying the most re-
cently released toxin), compared to 3.71 for both
tasks in EnviroMapper. These findings suggest
that Tox-E-Mapper not only facilitated quicker
task completion but also offered a more satisfying
and efficient user experience overall.

• Data Exploration andPatternRecognition:The
second part of the evaluation focused on how
well participants were able to explore environmen-
tal data, identify pollution hotspots, and analyze

Figure 2: Mean ease-of-use for Enviromapper Vs
Tox-e-mapper

Figure 3: User experience distribution: Enviromap-
per Vs Tox-e-mapper

Figure 4: Distribution of recommendation score
for Tox-e-mapper

chemical release trends using Tox-E-Mapper’s vi-
sual tools. Participants were tasked with identi-
fying high-concentration areas of chemical emis-
sions, interpreting trends in toxin releases over
time, and exploring the broader environmental
context by filtering data by chemical type and
timeframe.
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Participants found the clustering feature in Tox-E-
Mapper particularly useful for identifying pollu-
tion hotspots. The map view, enhanced by cluster-
ing overlays, made it easier to spot regions with
the highest emissions. In contrast, EnviroMap-
per’s map lacked the same level of interactivity
and data density, making it more difficult for users
to quickly identify these hotspots.
When analyzing chemical emission trends, par-
ticipants were able to easily interpret whether
toxin levels were increasing or decreasing over
time. The ability to filter data by chemical type
and timeframe allowed users to tailor their analy-
sis to the most relevant data, providing a clearer
understanding of emission trends in their specific
region. This capability enhanced the overall explo-
ration experience, making it more intuitive and
efficient.
These findings confirm that Tox-E-Mapper out-
performs EnviroMapper in supporting users in
exploring environmental data and identifying key
patterns in chemical release, thanks to its more
advanced visualization tools and enhanced inter-
activity.

6 Conclusions and Discussions
In this project, we developed Tox-E-Mapper, an interac-
tive geospatial tool aimed at improving the accessibil-
ity and usability of the Toxics Release Inventory (TRI)
data. Our primary goal was to enhance the ability of

stakeholders to monitor, analyze, and make data-driven
decisions regarding hazardous chemical releases. By
leveraging advanced clustering techniques, dynamic
data interactivity, and geospatial visualizations, Tox-E-
Mapper enables users to track environmental trends
more effectively than traditional platforms like Envi-
roMapper.

6.1 Key Findings and Results
(1) User Experience: Tox-E-Mapper outperforms

EnviroMapper in ease of use, task completion
speed, and user satisfaction. Participants found it
faster and more intuitive for identifying pollution
hotspots and analyzing emission trends.

(2) Data Analysis and Clustering:The use of PCA
and K-Means clustering effectively identified pol-
lution hotspots, offering better insights into chem-
ical release patterns than traditional tools.

(3) Machine Learning Models:The machine learn-
ing models employed, particularly the HistGradi-
entBoostingRegressor, demonstrated good poten-
tial in analyzing the TRI dataset.However, issues
with predicting zeros (no chemical releases) lim-
ited the models’ ability to offer valuable insights
for forecasting. Despite these challenges, the mod-
els successfully highlighted important features
and provided a robust foundation for the plat-
form’s data exploration tools.

Table 1: Sample Metrics from 1 experiment training model for forecasting with Histogram Gradient
Boosting Regressor

6.2 Limitations
(1) Model Performance and Limitations: During

model training, evaluation scores and learning
curves indicated that themodel was learning. How-
ever, it frequently predicted zeros, limiting its abil-
ity to provide meaningful insights. This led us

to drop our proposed forecasting innovation, as
more data is needed to improve model perfor-
mance.

(2) Tool and Database Choices: Initially, we consid-
ered using D3.js or Folium for geospatial visualiza-
tions, but we ultimately switched to Tableau for
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its practicality, ease of use, and superior capabili-
ties in creating interactive, dynamic visualizations
that better aligned with the project’s needs. Sim-
ilarly, while we had planned to use PostgreSQL
for database management, the high data volume
proved costly, prompting us to opt for SQLite,
which provided a more cost-effective solution for
handling large datasets.

(3) Incomplete Dataset: The dataset only includes
government-reported industries, excluding data
from non-reporting facilities, which limits the
comprehensiveness of the analysis.

6.3 Future Scope
(1) Forecasting andAlternativeApproaches:Explore

classification or anomaly detection methods for
better handling of data sparsity and improvemodel
performance.

(2) PlatformAccessibility:Host Tox-E-Mapper pub-
licly by purchasing a domain and expanding ac-
cessibility.

In conclusion, Tox-E-Mapper improves TRI data anal-
ysis through interactive geospatial visualizations, clus-
tering, and dynamic filtering.While model performance
was limited by frequent zero predictions, preventing
meaningful insights for forecasting, the platform still of-
fers valuable tools for environmental decision-making.
The project highlights the potential of combining ma-
chine learning and geospatial analysis for enhanced en-
vironmental monitoring, though more data is needed to
refine the model. All teammembers contributed equally
to the development and success of the project, collabo-
rating on various aspects such as data cleaning, machine
learning, UI design, and usability evaluation.
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A Appendix 1 - Sample Metrics

Table 2: Sample Metrics from 1 experiment training model for forecasting with Histogram Gradient
Boosting Regressor

Scoring Function MAPE MAE MSE RMSE
neg_mean_absolute_percentage_error 0.26 118481.36 54316723669698.88 7369988.04

neg_mean_squared_error 1.37e+20 143174.61 53606213011906.93 7321626.39
neg_root_mean_squared_error 0.26 118481.36 54316723669698.88 7369988.04
neg_mean_absolute_error 0.26 118481.36 54316723669698.88 7369988.04
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B Appendix 2 - EDA Results

Figure 5: EDA visual output for DecisionTreeRegressor Production Waste Distribution
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Figure 6: EDA visualization for correlation matrix VIF for each feature
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C Appendix 3 - Tableau Prep Workflow

Figure 7: Tableau Prep Workflow - 1
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Figure 8: Tableau Prep Workflow - 2
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